| 1. | A singular perturbation theory for the study of newtonian dynamical behaviour of kink 扭结孤子牛顿动力学行为的奇异摄动理论 |
| 2. | Geometric singular perturbation theory for ordinary differential equations with multifrequency 多频常微分方程的几何奇异扰动理论 |
| 3. | Necessary conditions for invoking the singular perturbation theory in the theory of the pebs method 法理论中应用奇异摄动理论的必要条件 |
| 4. | In addition , the model is decomposed into the slow and fast subsystems using singular perturbation theory and output re - definition method 另外,利用输出重定义对柔性臂模型进行进一步的奇异摄动分解,将系统模型分解为与刚性臂降阶快子系统模型和慢子系统模型。 |
| 5. | More specifically , we combine geometric singular perturbation theory with melnikov analysis and integrable theory to prove the persistence of homoclinic orbits ) dinger方程同宿轨道的存在性,其基本思想方法是基于整体可积理论、 melnikov方法和奇异扰动理论的综合运用 |
| 6. | The author built the dynamics model of its constrained motion with frictional contact , and its moving stability is analyzed by singular perturbation theory 提出了管道内受限微机器人运动的动力学模型,并根据这一模型利用奇异摄动理论对微管道机器人管内运动稳定性进行了研究。 |
| 7. | Considering these problems , a control strategy , which does not need additional sensors and takes on robust perfornance for time - invariable elastic modulus , is applied using singular perturbation theory 针对这些问题,利用奇异摄动理论,提出了一种不需要附加传感器,并对时变弹性模量具有鲁棒性的控制策略。 |
| 8. | The growth and development of the research in the singular perturbation theory in the department of mathematics at east china normal university is reviewed , uncovering historical facts in this research area in china 摘要回顾了“奇异摄动”理论研究在华东师范大学数学系的兴起和发展,并反映了该研究在现代中国的历史。 |
| 9. | We adopt a three mode fourier truncation and get a six dimensional model . this model is considered and the persistence of the homoclinic orbits is obtained by melnikov ' s analysis together with the geometrical singular perturbation theory ) dinger ( dnls )方程,通过采用三模fourier截断,我们得到一个六维模型,利用melnikov分析和几何奇异扰动理论证明了这个六维模型同宿轨道的保持性。 |
| 10. | First , we take the analysis of phase - plane on the invariant plane for the perturbed and unperturbed systems . next , we applied the singular perturbation theory to establish the persistence of invariant manifolds , as well as the " fiber represent at iones " of these manifolds . finally , by using the global integrable theory of the unperturbed system and melnikov measurement we obtai n the existence of homoclinic orbits for the cqs equation under the generalized parameters conditions 首先,我们在常值平面上对扰动和未扰动系统进行相平面分析;然后利用奇异扰动理论讨论不变流形的保持性,并给出不变流形的纤维表示;借助于未扰动系统的可积结构和melnikov测度,我们得到了三次?五次非线性schr ( |